- Теплотехнический расчет с примером
- Расчет отопления — необходимый шаг для эффективности обогревательной системы строения
- Теплотехнический расчет. Пример расчета стены. Обзор программы «Теремок» и онлайн калькулятора
-
Теплотехнический расчет ограждающих конструкций зданий
- В чем смысл расчета?
- Теплотехнические требования
- Теплотехнические качества
- Задачи теплотехнического расчета
- Основные параметры для расчета
- Теплотехнический расчет: программа
- Теплотехнический расчет: пример расчета для наружных стен
- Исходные данные
- Комфортные условия
- Условия энергосбережения
- Толщина утеплителя
- Необходимость выполнения расчета
- Расчет отопления по площади помещения
Теплотехнический расчет с примером
Давным-давно здания и сооружения строились, не задумываясь о том, какими теплопроводными качествами обладают ограждающие конструкции. Другими словами, стены делались просто толстыми. И если вам когда-нибудь случалось быть в старых купеческих домах, то вы могли заметить, что наружные стены этих домов выполнены из керамического кирпича, толщина которых составляет порядка 1,5 метров. Такая толщина кирпичной стены обеспечивала и обеспечивает до сих пор вполне комфортное пребывание людей в этих домах даже в самые лютые морозы.
В настоящее же время все изменилось. И сейчас экономически не выгодно делать стены такими толстыми. Поэтому были придуманы материалы, которые могут ее уменьшить. Одни из них: утеплители и газосиликатные блоки. Благодаря этим материалам, например, толщина кирпичной кладки может быть снижена до 250 мм.
Теперь стены и перекрытия чаще всего делают 2-х или 3-х слойными, одним слоем из которых является материал с хорошими теплоизоляционными свойствами. А для того, чтобы определить оптимальную толщину этого материала, проводится теплотехнический расчет и определяется точка росы.
Как производится расчет по определению точки росы вы можете ознакомиться на следующей странице. Здесь же будет рассмотрен теплотехнический расчет на примере.
Для расчета потребуются два СНиПа, один СП, один ГОСТ и одно пособие:
- СНиП 23-02-2003 (СП 50.13330.2012). “Тепловая защита зданий”. Актуализированная редакция от 2012 года [1].
- СНиП 23-01-99* (СП 131.13330.2012). “Строительная климатология”. Актуализированная редакция от 2012 года [2].
- СП 23-101-2004. “Проектирование тепловой защиты зданий” [3].
- ГОСТ 30494-96 (заменен на ГОСТ 30494-2011 с 2011 года). “Здания жилые и общественные. Параметры микроклимата в помещениях” [4].
- Пособие. Е.Г. Малявина “Теплопотери здания. Справочное пособие” [5].
Скачать СНиПы и СП вы можете здесь, ГОСТ – здесь, а Пособие – здесь.
В процессе выполнения теплотехнического расчета определяют:
- теплотехнические характеристики строительных материалов ограждающих конструкций;
- приведённое сопротивление теплопередачи;
- соответствие этого приведённого сопротивления нормативному значению.
Дальше будут приведены два примера теплотехнического расчета с воздушной прослойкой и без нее.
Пример. Теплотехнический расчет трехслойной стены без воздушной прослойки.
Исходные данные
1. Климат местности и микроклимат помещения
Район строительства: г. Нижний Новгород.
Назначение здания: жилое .
Расчетная относительная влажность внутреннего воздуха из условия не выпадения конденсата на внутренних поверхностях наружных ограждений равна – 55% (СНиП 23-02-2003 п.4.3. табл.1 для нормального влажностного режима).
Оптимальная температура воздуха в жилой комнате в холодный период года tint= 20°С (ГОСТ 30494-96 табл.1).
Расчетная температура наружного воздуха text, определяемая по температуре наиболее холодной пятидневки обеспеченностью 0,92 = -31°С (СНиП 23-01-99 табл. 1 столбец 5);
Продолжительность отопительного периода со средней суточной температурой наружного воздуха 8°С равна zht = 215 сут (СНиП 23-01-99 табл. 1 столбец 11);
Средняя температура наружного воздуха за отопительный период tht = -4,1°С (СНиП 23-01-99 табл. 1 столбец 12).
Стена состоит из следующих слоев:
- Кирпич декоративный (бессер) толщиной 90 мм;
- утеплитель (минераловатная плита), на рисунке его толщина обозначена знаком “Х”, так как она будет найдена в процессе расчета;
- силикатный кирпич толщиной 250 мм;
- штукатурка (сложный раствор), дополнительный слой для получения более объективной картины, так как его влияние минимально, но есть.
3. Теплофизические характеристики материалов
Значения характеристик материалов сведены в таблицу.
Примечание (*): Данные характеристики можно также найти у производителей теплоизоляционных материалов.
4. Определение толщины утеплителя
Для расчета толщины теплоизоляционного слоя необходимо определить сопротивление теплопередачи ограждающей конструкции исходя из требований санитарных норм и энергосбережения.
4.1. Определение нормы тепловой защиты по условию энергосбережения
Определение градусо-суток отопительного периода по п.5.3 СНиП 23-02-2003:
Примечание: также градусо-сутки имеют обозначение – ГСОП.
Нормативное значение приведенного сопротивления теплопередаче следует принимать не менее нормируемых значений, определяемых по СНИП 23-02-2003 (табл.4) в зависимости от градусо-суток района строительства:
где: Dd – градусо-сутки отопительного периода в Нижнем Новгороде,
a и b – коэффициенты, принимаемые по таблице 4 (если СНиП 23-02-2003) или по таблице 3 (если СП 50.13330.2012) для стен жилого здания (столбец 3).
4.1. Определение нормы тепловой защиты по условию санитарии
В нашем случае рассматривается в качестве примера, так как данный показатель рассчитывается для производственных зданий с избытками явной теплоты более 23 Вт/м 3 и зданий, предназначенных для сезонной эксплуатации (осенью или весной), а также зданий с расчетной температурой внутреннего воздуха 12 °С и ниже приведенное сопротивление теплопередаче ограждающих конструкций (за исключением светопрозрачных).
Определение нормативного (максимально допустимого) сопротивления теплопередаче по условию санитарии (формула 3 СНиП 23-02-2003):
где: n = 1 – коэффициент, принятый по таблице 6 [1] для наружной стены;
tint = 20°С – значение из исходных данных;
text = -31°С – значение из исходных данных;
Δtn = 4°С – нормируемый температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, принимается по таблице 5 [1] в данном случае для наружных стен жилых зданий;
αint = 8,7 Вт/(м 2 ×°С) – коэффициент теплопередачи внутренней поверхности ограждающей конструкции, принимается по таблице 7 [1] для наружных стен.
Из приведенных выше вычислений за требуемое сопротивление теплопередачи выбираем Rreq из условия энергосбережения и обозначаем его теперь Rтр0= 3,214м 2 × °С/Вт .
5. Определение толщины утеплителя
Для каждого слоя заданной стены необходимо рассчитать термическое сопротивление по формуле:
где: δi- толщина слоя, мм;
λi – расчетный коэффициент теплопроводности материала слоя Вт/(м × °С).
1 слой (декоративный кирпич): R1 = 0,09/0,96 = 0,094 м 2 × °С/Вт .
3 слой (силикатный кирпич): R3 = 0,25/0,87 = 0,287 м 2 × °С/Вт .
4 слой (штукатурка): R4 = 0,02/0,87 = 0,023 м 2 × °С/Вт .
Определение минимально допустимого (требуемого) термического сопротивления теплоизоляционного материала (формула 5.6 Е.Г. Малявина “Теплопотери здания. Справочное пособие”):
где: Rint = 1/αint = 1/8,7 – сопротивление теплообмену на внутренней поверхности;
Rext = 1/αext = 1/23 – сопротивление теплообмену на наружной поверхности, αext принимается по таблице 14 [5] для наружных стен;
ΣRi = 0,094 + 0,287 + 0,023 – сумма термических сопротивлений всех слоев стены без слоя утеплителя, определенных с учетом коэффициентов теплопроводности материалов, принятых по графе А или Б (столбцы 8 и 9 таблицы Д1 СП 23-101-2004) в соответствии с влажностными условиями эксплуатации стены, м 2 ·°С/Вт
Толщина утеплителя равна (формула 5,7 [5]):
где: λут – коэффициент теплопроводности материала утеплителя, Вт/(м·°С).
Определение термического сопротивления стены из условия, что общая толщина утеплителя будет 250 мм (формула 5.8 [5]):
где: ΣRт,i – сумма термических сопротивлений всех слоев ограждения, в том числе и слоя утеплителя, принятой конструктивной толщины, м 2 ·°С/Вт.
Из полученного результата можно сделать вывод, что
R = 3,503м 2 × °С/Вт > Rтр0 = 3,214м 2 × °С/Вт → следовательно, толщина утеплителя подобрана правильно.
Влияние воздушной прослойки
В случае, когда в трехслойной кладке в качестве утеплителя применяются минеральная вата, стекловата или другой плитный утеплитель, необходимо устройство воздушной вентилируемой прослойки между наружной кладкой и утеплителем. Толщина этой прослойки должна составлять не менее 10 мм, а желательно 20-40 мм. Она необходима для того, чтобы осушать утеплитель, который намокает от конденсата.
Данная воздушная прослойка является не замкнутым пространством, поэтому в случае ее наличия в расчете необходимо учитывать требования п.9.1.2 СП 23-101-2004, а именно:
а) слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью (в нашем случае – это декоративный кирпич (бессер)), в теплотехническом расчете не учитываются;
б) на поверхности конструкции, обращенной в сторону вентилируемой наружным воздухом прослойки, следует принимать коэффициент теплоотдачи αext = 10,8 Вт/(м°С).
Примечание: влияние воздушной прослойки учитывается, например, при теплотехническом расчете пластиковых стеклопакетов.
Произведен теплотехнический расчет трехслойной стены для региона Нижний Новгород. Рассказано о том, как влияет воздушная прослойка на теплотехнические свойства стены.
Источник: svoydomtoday.ru
Расчет отопления — необходимый шаг для эффективности обогревательной системы строения
Грамотно произведенные расчеты отопительной системы для любой постройки – жилого дома, цеха, офиса, магазина и пр., будут гарантией ее стабильной, корректной, надежной и бесшумной эксплуатации. Помимо этого, вы избежите недоразумений с работниками жкх, излишних финансовых затрат и потерь энергии. Рассчитать отопление можно в несколько этапов.
При просчете отопления надо учитывать многие факторы.
Стадии расчетов
- Для начала нужно узнать тепловые потери здания. Это нужно, чтобы определить мощность котла, а также каждого из радиаторов. Теплопотери рассчитываются для каждого помещения, обладающего внешней стеной.
Обратите внимание! Далее надо будет проверить данные. Полученные цифры разделите на квадратуру комнаты. Таким образом, вы получите удельные тепловые потери (Вт/м²). Как правило – это 50/150 Вт/м². Если полученные данные сильно отличны от указанных, то значит, вы допустили ошибку. Поэтому цена сборки отопительной системы будет слишком высока.
- Далее нужно подобрать температурный режим. Желательно для подсчетов принять такие параметры: 75-65-20° (котел-радиаторы-комната). Подобный режим температур, когда производится расчет тепла, соответствует европейской норме отопления EN 442.
- Затем необходимо выбрать мощность батарей отопления, исходя из данных по теплопотерям в комнатах.
- После этого осуществляется гидравлический расчет – отопление без него не будет эффективным. Он нужен, чтобы определить диаметр труб и технические свойства циркуляционного насоса. Если дом частный, то сечение труб можно выбрать по таблице, которая будет приведена ниже.
- Далее нужно определиться с отопительным котлом (бытовым или промышленным).
- Затем находится объем отопительной системы. Ее вместительность нужно знать, чтобы выбрать расширительный бак либо убедиться, что объема водяного бачка, уже встроенного в теплогенератор, хватит. Получить нужные данные вам поможет любой он-лайн калькулятор.
Тепловой расчет
Чтобы осуществить теплотехнический этап проектирования системы отопления, вам нужны будут исходные данные.
Что нужно для начала работы
- Первым делом вам необходим будет проект постройки. В нем должны быть указаны наружные и внутренние размеры каждой из комнат, а также окон и внешних дверных проемов.
- Далее узнайте данные о расположении строения в отношении сторон света, а также климатическим условиям в вашей местности.
- Соберите информацию о высоте и составе внешних стен.
- Вам надо будет знать и параметры материалов пола (от помещения и до грунта), а также потолка (от помещений до улицы).
После того, как соберете все данные, можете начинать расчет расхода тепла на отопление. В итоге работы, вы соберете информацию, на основе которой сможете осуществить гидравлические подсчеты.
Нужная формула
Расчет тепловых нагрузок на систему должен определять теплопотери и мощность котла. В последнем случае формула расчета отопления такова:
- Мк – мощность теплогенератора, в кВт;
- Тп – теплопотери постройки;
- 1.2 – это запас, равный 20%.
Обратите внимание! Данный коэффициент запаса учитывает возможность падения давления в газопроводной системе зимой, помимо этого – непредвиденные тепловые потери. Например, как показывает фото, из-за разбитого окна, плохой теплоизоляции дверей, сильных морозов. Такой запас позволяет и широко регулировать режим температур.
Следует отметить, когда производится подсчет количества тепловой энергии, ее потери по зданию распределяются не равномерно, в среднем, цифры таковы:
- внешние стены теряют около 40% от общей цифры;
- через окна уходит 20%;
- полы отдают примерно 10%;
- сквозь крышу улетучивается 10%;
- 20% уходят через вентиляцию и двери.
Коэффициенты материалов
Коэффициенты теплопроводности некоторых материалов.
Далее, методика расчета тепловой энергии на отопление учитывает материалы дома. Они непосредственно влияют на уровень потерь тепла. При подсчетах, чтоб учесть все факторы, применяются такие коэффициенты:
- К1 – вид окон;
- К2 – теплоизоляция стен;
- К3 – означает соотношение по площади окон и полов;
- К4 – минимальный режим температур снаружи;
- К5 – число внешних стен постройки;
- К6 – этажность сооружения;
- К7 – высота комнаты.
Что касается окон, коэффициенты их теплопотерь равны:
- традиционное остекление – 1.27;
- двухкамерные стеклопакеты – 1;
- трехкамерные аналоги – 0.85.
Чем больший объем имеют окна относительно полов, тем большее количество тепла теряет здание.
Когда производите расчет потребления тепловой энергии на отопление, учитывайте, что материал стен имеет такие величины коэффициента:
- блоки либо панели из бетона – 1.25/1.5;
- брус или бревна – 1.25;
- кладка в 1.5 кирпича – 1.5;
- кладка в 2.5 кирпича – 1.1;
- пенобетонные блоки – 1.
При отрицательных температурах тепловые утечки также увеличиваются.
- До -10° коэффициент будет равен 0.7.
- От -10° он составит 0.8.
- При -15° нужно оперировать цифрой в 0.9.
- До -20° — 1.
- От -25° величина коэффициента будет 1.1.
- При -30° он составит 1.2.
- До -35° данная величина равняется 1.3.
Когда вы производите расчет тепловой энергии, учитывайте, что ее утери зависимы и от того, сколько наружных стен в здании:
Чем больше число этажей, тем сложнее расчеты.
Число этажей либо вид помещения, который расположен над жилой комнатой, влияют на коэффициент К6. Когда дом имеет от двух этажей и выше, расчет теплоэнергии на отопление учитывает коэффициент 0.82. Если при этом здание имеет теплый чердак, цифра меняется на 0.91, если данное помещение не утеплено, то на 1.
Высота стен влияет на уровень коэффициента так:
Помимо всего прочего, методика расчета потребности тепловой энергии на отопление учитывает площадь комнаты — Пк, а также удельное значение тепловых потерь — УДтп.
Конечная формула для необходимого подсчета коэффициента теплопотерь выглядит таким образом:
Тп = УДтп ∙ Пл ∙ К1 ∙ К2 ∙ К3 ∙ К4 ∙ К5 ∙ К6 ∙ К7. При этом УДтп составляет 100 Вт/м².
Пример расчетов
Постройка, для которой мы будем находить нагрузку на отопительную систему, будет иметь следующие параметры.
- Окна с двойными стеклопакетами, т.е. К1 составляет 1.
- Внешние стены – пенобетонные, коэффициент такой же. 3 из них внешние, иными словами К5 составляет 1.22.
- Квадратура окон равна 23% от аналогичного показателя пола — К3 составляет 1.1.
- Снаружи температура -15°, К4 равен 0.9.
- Чердак постройки не утепленный, иными словами К6 будет 1.
- Высота потолков три метра, т.е. К7 составляет 1.05.
- Площадь помещений равна 135 м².
Зная все цифры, подставляем их в формулу:
Пт = 135 ∙ 100 ∙ 1 ∙ 1 ∙ 1.1 ∙ 0,9 ∙ 1.22 ∙ 1 ∙ 1.05 = 17120.565 Вт (17.1206 кВт).
Теперь вы можете своими руками просчитать мощность теплогенератора:
Мк = 1.2 ∙ 17.1206 = 20.54472 кВт.
Гидравлический расчет для обогревательной системы
Пример схемы гидравлического расчета.
Этот этап проектирования поможет вам правильно выбрать длину и диаметр труб, а также грамотно сбалансировать отопительную систему при помощи радиаторных клапанов. Этот расчет даст вам возможность подобрать и мощность электрического циркуляционного насоса.
Качественный циркуляционный насос.
По итогам гидравлических подсчетов нужно узнать такие цифры:
- M — величину расхода воды в системе (кг/с);
- DP — утери напора;
- DP1, DP2… DPn, — теряемый напор, от теплового генератора до каждой батареи.
- Q означает общую мощность отопления, берется с учетом тепловых потерь дома.
- Cp – это уровень удельной теплоемкости воды. Чтобы упростить подсчеты, ее можно принять за 4.19 кДж.
- DPt – температурная разница на входе и выходе из котла.
Тем же образом можно рассчитать расходование воды (теплоносителя) на любом участке трубопровода. Участки избирайте так, чтоб скорость жидкости была одинаковой. По данным норматива, разбитие на участки надо осуществлять до редукции или тройника. Далее суммируйте мощность всех батарей, к которым подводится вода через каждый промежуток труб. Затем подставьте величину в озвученную выше формулу. Данные подсчеты нужно произвести для труб перед каждой из батарей.
Далее, применяя полученные величины расходования теплоносителя, для всех участков перед радиаторами вычислите скорость теплоносителя по приводимой формуле:
- V – это скорость продвижения теплоносителя (м/с);
- M – расходование воды на участке трубы (кг/с);
- P – ее плотность (1 т/м³);
- F является площадью поперечного сечения труб (м²), находится она по формуле: π ∙ r/2, где буква r означает внутренний диаметр.
Далее наша инструкция предлагает расчет потерь напора при трении в трубах, по такой формуле:
- R означает удельные потери при трении в трубе (Па/м);
- L является длиной участка (м);
После это посчитайте утери напора на сопротивлениях (арматура, фитинги), формула действий:
- Σξ обозначает сумму коэффициентов местных сопротивлений на данном участке;
- V — скорость воды в системе
- Р – это плотность теплоносителя.
Далее суммируйте сопротивление на всех участках до каждой из батарей и сравните их с контрольными величинами.
Обратите внимание! Чтобы циркуляционный насос достаточно обеспечивал теплом все батареи, утери напора на длинных ветках системы не должны быть более 20000 Па. Скорость течения теплоносителя должна быть от 0.25 до 1.5 м/с.
Если скорость будет свыше указанного значения, в системе появится шум. Минимальное значение скорости в 0,.25 м/с рекомендовано снип №2.04.05-91, чтобы трубы не завоздушивались.
Трубы из разных материалов, имеют различные свойства.
Чтобы соблюсти все озвученные условия, надо правильно выбрать диаметр труб. Сделать это вы можете по приводимой таблице, где указана суммарная мощность батарей.
Расчет отопления, подсчет потребления тепловой энергии по СНИП своими руками, методика, нормативы, калькулятор, инструкция, фото и видео-уроки, цена
Источник: otoplenie-gid.ru
Теплотехнический расчет. Пример расчета стены. Обзор программы «Теремок» и онлайн калькулятора
В современных условиях человек все чаще задумывается о рациональном использовании ресурсов. Электричество, вода, материалы. К экономии всего этого в мире пришли уже достаточно давно и всем понятно как это сделать. Но основную сумму в счетах на оплату составляет отопление, и не каждому понятно, как снизить расход по этому пункту.
Что такое теплотехнический расчет?
Теплотехнический расчет выполняют для того, чтобы подобрать толщину и материал ограждающих конструкций и привести здание в соответствие нормам тепловой защиты. Основным нормативным документом, регламентирующим способность конструкции сопротивляться теплопередаче, является СНиП 23-02-2003 «Тепловая защита зданий».
Основным показателем ограждающей поверхности с точки зрения теплозащиты стало приведенное сопротивление теплопередаче. Это величина, учитывающая теплозащитные характеристики всех слоев конструкции, учитывая мостики холода.
Подробный и грамотный теплотехнический расчет — достаточно трудоемок. При возведении частных домов, собственники стараются учесть прочностные характеристики материалов, часто забывая о сохранении тепла. Это может привести к довольно плачевным последствиям.
Зачем выполняется расчет?
Перед началом строительства заказчик может выбрать, будет он учитывать теплотехнические характеристики или обеспечит только прочность и устойчивость конструкций.
Расходы на утепление совершенно точно увеличат смету на возведение здания, но снизят затраты на дальнейшую эксплуатацию. Индивидуальные дома строят на десятки лет, возможно, они будут служить и следующим поколениям. За это время затраты на эффективный утеплитель окупятся несколько раз.
Что получает владелец при правильном выполнении расчетов:
- Экономия на отоплении помещений. Тепловые потери здания снижаются, соответственно, уменьшится количество секций радиатора при классической системе отопления и мощность системы теплых полов. В зависимости от способа нагрева, затраты владельца на электричество, газ или горячую воду становятся меньше;
- Экономия на ремонте. При правильном утеплении в помещении создается комфортный микроклимат, на стенах не образуется конденсат, и не появляются опасные для человека микроорганизмы. Наличие на поверхности грибка или плесени требует проведения ремонта, причем простой косметический не принесет никаких результатов и проблема возникнет вновь;
- Безопасность для жильцов. Здесь, также как и в предыдущем пункте, речь идет о сырости, плесени и грибке, которые могут вызывать различные болезни у постоянно пребывающих в помещении людей;
- Бережное отношение к окружающей среде. На планете дефицит ресурсов, поэтому уменьшение потребления электроэнергии или голубого топлива благоприятно влияет на экологическую обстановку.
Нормативные документы для выполнения расчета
Приведенное сопротивление и его соответствие нормируемому значению – главная цель расчета. Но для его выполнения потребуется узнать теплопроводности материалов стены, кровли или перекрытия. Теплопроводность – величина, характеризующая способность изделия проводить через себя тепло. Чем она ниже, тем лучше.
Во время проведения расчета теплотехники опираются на следующие документы:
- СП 50.13330.2012 «Тепловая защита зданий». Документ переиздан на основе СНиП 23-02-2003. Основной норматив для расчета [1];
- СП 131.13330.2012 «Строительная климатология». Новое издание СНиП 23-01-99*. Данный документ позволяет определить климатические условия населенного пункта, в котором расположен объект [2];
- СП 23-101-2004 «Проектирование тепловой защиты зданий» более подробно, чем первый документ в списке, раскрывает тему [3];
- ГОСТ 30494-96 (заменен на ГОСТ 30494-2011 с 2011 года) «Здания жилые и общественные» [4];
- Пособие для студентов строительных ВУЗов Е.Г. Малявина «Теплопотери здания. Справочное пособие» [5].
* — дальше в тексте я буду ссылаться на нормативные документы и чтобы полностью не прописывать их название я укажу только номер, например [1].
Теплотехнический расчет не сложен. Его может выполнить человек без специального образования по шаблону. Главное очень внимательно подойти к вопросу.
Пример расчета трехслойной стены без воздушной прослойки
Давайте подробно рассмотрим пример теплотехнического расчета. Для начала необходимо определиться с исходными данными. Материалы для строительства стен Вы, как правило, выбираете сами. Мы же будем рассчитывать толщину утепляющего слоя исходя из материалов стены.
Исходные данные
Данные индивидуальные для каждого объекта строительства и зависят от места расположения объекта.
1. Климат и микроклимат
- Район строительства: г. Вологда.
- Назначение объекта: жилое.
- Относительная влажность воздуха для помещения с нормальным влажностным режимом составляет 55% ([1] п.4.3. табл.1).
- Температура внутри жилых помещений tint задается нормативными документами ([4] табл.1) и равна 20 градусов Цельсия».
text — расчетная температура воздуха снаружи. Она устанавливается по температуре самых холодных пяти дней в году. Значение можно найти в [2], таблице 1, столбец 5. Для заданной местности значение составляет -32ᵒС.
zht = 231 сутки – количество дней периода, когда необходимо дополнительное отопление помещения, то есть среднесуточная температура снаружи составляет меньше 8ᵒС. Значение ищут в той же таблице, что и предыдущее, но в столбце 11.
tht = -4,1ᵒС – средняя температура воздуха снаружи во время периода отопления. Значение указано в столбце 12.
2. Материалы стены
В расчет следует принимать все слои (даже слой штукатурки, если он есть). Это позволит наиболее точно рассчитать конструкцию.
В данном варианте рассмотрим стену, состоящую из следующих материалов:
- слой штукатурки, 2 сантиметра;
- внутренняя верста из кирпича керамического рядового полнотелого толщиной 38 сантиметров;
- слой минераловатного утеплителя Roсkwool, толщина которого подбирается расчетом;
- наружная верста из лицевого керамического кирпича, толщиной 12 сантиметров.
3. Теплопроводность принятых материалов
Все свойства материалов должны быть представлены в паспорте от производителя. Многие компании представляют полную информацию о продукции на своих сайтах. Характеристики выбранных материалов для удобства сводятся в таблицу.
Что такое теплотехнический расчет. Пример расчета стены. Программа для проведения теплотехнического расчета. Обзор онлайн калькулятора.
Источник: postroy-sam.com
Теплотехнический расчет ограждающих конструкций зданий
Теплотехнический расчет позволяет определить минимальную толщину ограждающих конструкций для того, чтобы не было случаев перегрева или промерзания в процессе эксплуатации строения.
Ограждающие конструктивные элементы отапливаемых общественных и жилых зданий, за исключением требований устойчивости и прочности, долговечности и огнестойкости, экономичности и архитектурного оформления, должны отвечать в первую очередь теплотехническим нормам. Выбирают ограждающие элементы в зависимости от конструктивного решения, климатологических характеристик района застройки, физических свойств, влажно-температурного режима в здании, а также в соответствии с требованиями сопротивления теплопередаче, воздухонипроницанию и паропроницанию.
В чем смысл расчета?
- Если во время расчета стоимости будущего строения учитывать лишь прочностные характеристики, то, естественно, стоимость будет меньше. Однако это видимая экономия: впоследствии на обогрев помещения уйдет значительно больше средств.
- Грамотно подобранные материалы создадут в помещении оптимальный микроклимат.
- При планировке системы отопления также необходим теплотехнический расчет. Чтобы система была рентабельной и эффективной, необходимо иметь понятие о реальных возможностях здания.
Теплотехнические требования
Важно, чтобы наружные конструкции соответствовали следующим теплотехническим требованиям:
- Имели достаточные теплозащитные свойства. Другими словами, нельзя допускать в летнее время перегрева помещений, а зимой – излишних потерь тепла.
- Разность температур воздуха внутренних элементов ограждений и помещений не должна быть выше нормативного значения. В противном случае может произойти чрезмерное охлаждение тела человека излучением тепла на данные поверхности и конденсация влаги внутреннего воздушного потока на ограждающих конструкциях.
- В случае изменения теплового потока температурные колебания внутри помещения должны быть минимальные. Данное свойство называется теплоустойчивостью.
- Важно, чтобы воздухонепроницаемость ограждений не вызывала сильного охлаждения помещений и не ухудшала теплозащитные свойства конструкций.
- Ограждения должны иметь нормальный влажностный режим. Так как переувлажнение ограждений увеличивает потери тепла, вызывает в помещении сырость, уменьшает долговечность конструкций.
Чтобы конструкции соответствовали вышеперечисленным требованиям, выполняют теплотехнический расчет, а также рассчитывают теплоустойчивость, паропроницаемость, воздухопроницаемость и влагопередачу по требованиям нормативной документации.
Теплотехнические качества
От теплотехнических характеристик наружных конструктивных элементов строений зависит:
- Влажностный режим элементов конструкции.
- Температура внутренних конструкций, которая обеспечивает отсутствие на них конденсата.
- Постоянная влажность и температура в помещениях, как в холодное, так и в теплое время года.
- Количество тепла, которое теряется зданием в зимний период времени.
Итак, исходя из всего перечисленного выше, теплотехнический расчет конструкций считается немаловажным этапом в процессе проектирования зданий и сооружений, как гражданских, так и промышленных. Проектирование начинается с выбора конструкций – их толщины и последовательности слоев.
Задачи теплотехнического расчета
Итак, теплотехнический расчет ограждающих конструктивных элементов осуществляется с целью:
- Соответствия конструкций современным требованиям по тепловой защите зданий и сооружений.
- Обеспечения во внутренних помещениях комфортного микроклимата.
- Обеспечения оптимальной тепловой защиты ограждений.
Основные параметры для расчета
Чтобы определить расход тепла на отопление, а также произвести теплотехнический расчет здания, необходимо учесть множество параметров, зависящих от следующих характеристик:
- Назначение и тип здания.
- Географическое расположение строения.
- Ориентация стен по сторонам света.
- Размеры конструкций (объем, площадь, этажность).
- Тип и размеры окон и дверей.
- Характеристики отопительной системы.
- Количество людей, находящихся в здании одновременно.
- Материал стен, пола и перекрытия последнего этажа.
- Наличие системы горячего водоснабжения.
- Тип вентиляционных систем.
- Другие конструктивные особенности строения.
Теплотехнический расчет: программа
На сегодняшний день разработано множество программ, позволяющих произвести данный расчет. Как правило, расчет осуществляется на основании методики, изложенной в нормативно-технической документации.
Данные программы позволяют вычислить следующее:
- Термическое сопротивление.
- Потери тепла через конструкции (потолок, пол, дверные и оконные проемы, а также стены).
- Количество тепла, требуемого для нагрева инфильтрирующего воздуха.
- Подбор секционных (биметаллических, чугунных, алюминиевых) радиаторов.
- Подбор панельных стальных радиаторов.
Теплотехнический расчет: пример расчета для наружных стен
Для расчета необходимо определить следующие основные параметры:
- tв = 20°C – это температура воздушного потока внутри здания, которая принимается для расчета ограждений по минимальным значениям наиболее оптимальной температуры соответствующего здания и сооружения. Принимается она в соответствии с ГОСТом 30494-96.
- По требованиям ГОСТа 30494-96 влажность в помещении должна составлять 60%, в результате в помещении будет обеспечен нормальный влажностный режим.
- В соответствии с приложением B СНиПа 23-02-2003, зона влажности сухая, значит, условия эксплуатации ограждений – A.
- tн = -34 °C – это температура наружного воздушного потока в зимний период времени, которая принимается по СНиП исходя из максимально холодной пятидневки, имеющей обеспеченность 0,92.
- Zот.пер = 220 суток – это длительность отопительного периода, которая принимается по СНиПу, при этом среднесуточная температура окружающей среды ≤ 8 °C.
- Tот.пер. = -5,9 °C – это температура окружающей среды (средняя) в отопительный период, которая принимается по СНиП, при суточной температуре окружающей среды ≤ 8 °C.
Исходные данные
В таком случае теплотехнический расчет стены будет производиться с целью определения оптимальной толщины панелей и теплоизоляционного материала для них. В качестве наружных стен будут использоваться сэндвич-панели (ТУ 5284-001-48263176-2003).
Комфортные условия
Рассмотрим, как выполняется теплотехнический расчет наружной стены. Для начала следует вычислить требуемое сопротивление теплопередачи, ориентируясь на комфортные и санитарно-гигиенические условия:
n = 1 – это коэффициент, который зависит от положения наружных конструктивных элементов по отношению к наружному воздуху. Его следует принимать по данным СНиПа 23-02-2003 из таблицы 6.
Δt н = 4,5 °C – это нормируемый перепад температуры внутренней поверхности конструкции и внутреннего воздуха. Принимается по данным СНиПа из таблицы 5.
αв = 8,7 Вт/м 2 °C – это теплопередача внутренних ограждающих конструкций. Данные берутся из таблицы 5, по СНиПу.
Подставляем данные в формулу и получаем:
Условия энергосбережения
Выполняя теплотехнический расчет стены, исходя из условий энергосбережения, необходимо вычислить требуемое сопротивление теплопередачи конструкций. Оно определяется по ГСОП (градусо-сутки отопительного периода, °C) по следующей формуле:
tв – это температура воздушного потока внутри здания, °C.
Zот.пер. и tот.пер. – это продолжительность (сут.) и температура (°C) периода, имеющего среднесуточную температуру воздуха ≤ 8 °C.
Исходя из условий энергосбережения, определяем R тр методом интерполяции по СНиПу из таблицы 4:
Далее, выполняя теплотехнический расчет наружной стены, следует вычислить сопротивление теплопередаче R:
d – это толщина теплоизоляции, м.
l = 0,042 Вт/м°C – это теплопроводность минераловатной плиты.
αн = 23 Вт/м 2 °C – это теплоотдача наружных конструктивных элементов, принимаемый по СНиПу.
Толщина утеплителя
Толщина теплоизоляционного материала определяется исходя из того, что R = R тр , при этом R тр берется при условиях энергосбережения, таким образом:
2,909 = 0,158 + d/0,042, откуда d = 0,116 м.
Подбираем марку сэндвич-панелей по каталогу с оптимальной толщиной теплоизоляционного материала: ДП 120, при этом общая толщина панели должна составлять 120 мм. Аналогичным образом производится теплотехнический расчет здания в целом.
Необходимость выполнения расчета
Запроектированные на основании теплотехнического расчета, выполненного грамотно, ограждающие конструкции позволяют сократить затраты на отопление, стоимость которого регулярно увеличиваются. К тому же сбережение тепла считается немаловажной экологической задачей, ведь это напрямую связано с уменьшением потребления топлива, что приводит к снижению воздействия негативных факторов на окружающую среду.
Кроме того, стоит помнить о том, что неправильно выполненная теплоизоляция способна привести к переувлажнению конструкций, что в результате приведет к образованию плесени на поверхности стен. Образование плесени, в свою очередь, приведет к порче внутренней отделки (отслаивание обоев и краски, разрушение штукатурного слоя). В особо запущенных случаях может понадобиться радикальное вмешательство.
Очень часто строительные компании в своей деятельности стремятся использовать современные технологии и материалы. Только специалисту под силу разобраться в необходимости применения того или иного материала, как отдельно, так и в совокупности с другими. Именно теплотехнический расчет поможет определиться с наиболее оптимальными решениями, которые обеспечат долговечность конструктивных элементов и минимальные финансовые затраты.
Теплотехнический расчет позволяет определить минимальную толщину ограждающих конструкций для того, чтобы не было случаев перегрева или промерзания в процессе эксплуатации строения.
Источник: www.syl.ru
Расчет отопления по площади помещения
Создавать систему отопления в собственном доме или даже в городской квартире – чрезвычайно ответственное занятие. Будет совершенно неразумным при этом приобретать котельное оборудование, как говорится, «на глазок», то есть без учета всех особенностей жилья. В этом вполне не исключено попадание в две крайности: или мощности котла будет недостаточно – оборудование станет работать «на полную катушку», без пауз, но так и не давать ожидаемого результата, либо, наоборот, будет приобретен излишне дорогой прибор, возможности которого останутся совершенно невостребованными.
Расчет отопления по площади помещения
Но и это еще не все. Мало правильно приобрести необходимый котел отопления – очень важно оптимально подобрать и грамотно расположить по помещениям приборы теплообмена – радиаторы, конвекторы или «теплые полы». И опять, полагаться только лишь на свою интуицию или «добрые советы» соседей – не самый разумный вариант. Одним словом, без определенных расчетов – не обойтись.
Конечно, в идеале, подобные теплотехнические вычисления должны проводить соответствующие специалисты, но это часто стоит немалых денег. А неужели неинтересно попытаться выполнить это самостоятельно? В настоящей публикации будет подробно показано, как выполняется расчет отопления по площади помещения, с учетом многих важных нюансов. Методику нельзя назвать совершенно «безгрешной», однако, она все же позволяет получить результат с вполне приемлемой степенью точности.
Простейшие приемы расчета
Для того чтобы система отопления создавала в холодное время года комфортные условия проживания, она должна справляться с двумя основными задачами. Эти функции тесно связаны между собой, и разделение их – весьма условно.
- Первое – это поддержание оптимального уровня температуры воздуха во всем объеме отапливаемого помещения. Безусловно, по высоте уровень температуры может несколько изменяться, но этот перепад не должен быть значительным. Вполне комфортными условиями считается усредненный показатель в +20 °С – именно такая температура, как правило, принимается за исходную в теплотехнических расчетах.
Иными словами, система отопления должна быть способной прогреть определенный объем воздуха.
Если уж подходить с полной точностью, то для отдельных помещений в жилых домах установлены стандарты необходимого микроклимата – они определены ГОСТ 30494-96. Выдержка из этого документа – в размещенной ниже таблице:
- Второе – компенсирование потерь тепла через элементы конструкции здания.
Самый главный «противник» системы отопления — это теплопотери через строительные конструкции
Увы, теплопотери – это самый серьезный «соперник» любой системы отопления. Их можно свести к определенному минимуму, но даже при самой качественной термоизоляции полностью избавиться от них пока не получается. Утечки тепловой энергии идут по всем направлениям – примерное распределение их показано в таблице:
Естественно, чтобы справиться с такими задачами, система отопления должна обладать определенной тепловой мощностью, причем этот потенциал не только должен соответствовать общим потребностям здания (квартиры), но и быть правильно распределенным по помещениям, в соответствии с их площадью и целым рядом других важных факторов.
Обычно расчет и ведется в направлении «от малого к большому». Проще говоря, просчитывается потребное количество тепловой энергии для каждого отапливаемого помещения, полученные значения суммируются, добавляется примерно 10% запаса (чтобы оборудование не работало на пределе своих возможностей) – и результат покажет, какой мощности необходим котел отопления. А значения по каждой комнате станут отправной точкой для подсчета необходимого количества радиаторов.
Самый упрощённый и наиболее часто применяемый в непрофессиональной среде метод – принять норму 100 Вт тепловой энергии на каждый квадратный метр площади:
Самый примитивный способ подсчета — соотношение 100 Вт/м²
Q – необходимая тепловая мощность для помещения;
100 — удельная мощность на единицу площади (Вт/м²).
Например, комната 3.2 × 5,5 м
Способ, очевидно, очень простой, но весьма несовершенный. Стоит сразу оговориться, что он условно применим только при стандартной высоте потолков – примерно 2.7 м (допустимо – в диапазоне от 2.5 до 3.0 м). С этой точки зрения, более точным станет расчет не от площади, а от объема помещения.
Расчет тепловой мощности от объема помещения
Понятно, что в этом случае значение удельной мощности рассчитано на кубический метр. Его принимают равным 41 Вт/м³ для железобетонного панельного дома, или 34 Вт/м³ — в кирпичном или выполненном из других материалов.
41 или 34 – удельная мощность на единицу объема (Вт/м³).
Например, та же комната, в панельном доме, с высотой потолков в 3.2 м:
Результат получается более точным, так как уже учитывает не только все линейные размеры помещения, но даже, в определенной степени, и особенности стен.
Но все же до настоящей точности он еще далек – многие нюансы оказываются «за скобками». Как выполнить более приближенные к реальным условиям расчеты – в следующем разделе публикации.
Проведение расчетов необходимой тепловой мощности с учетом особенностей помещений
Рассмотренные выше алгоритмы расчетов бывают полезны для первоначальной «прикидки», но вот полагаться на них полностью все же следует с очень большой осторожностью. Даже человеку, который ничего не понимает в строительной теплотехнике, наверняка могут показаться сомнительными указанные усредненные значения – не могут же они быть равными, скажем, для Краснодарского края и для Архангельской области. Кроме того, комната — комнате рознь: одна расположена на углу дома, то есть имеет две внешних стенки, а другая с трех сторон защищена от теплопотерь другими помещениями. Кроме того, в комнате может быть одно или несколько окон, как маленьких, так и весьма габаритных, порой – даже панорамного типа. Да и сами окна могут отличаться материалом изготовления и другими особенностями конструкции. И это далеко не полный перечень – просто такие особенности видны даже «невооруженным глазом».
Одним словом, нюансов, влияющих на теплопотери каждого конкретного помещения – достаточно много, и лучше не полениться, а провести более тщательный расчет. Поверьте, по предлагаемой в статье методике это будет сделать не так сложно.
Общие принципы и формула расчета
В основу расчетов будет положено все то же соотношение: 100 Вт на 1 квадратный метр. Но вот только сама формула «обрастает» немалым количеством разнообразных поправочных коэффициентов.
Q = (S × 100) × a × b× c × d × e × f × g × h × i × j × k × l × m
Латинские буквы, обозначающие коэффициенты, взяты совершенно произвольно, в алфавитном порядке, и не имеют отношения к каким-либо стандартно принятым в физике величинам. О значении каждого коэффициента будет рассказано отдельно.
- «а» — коэффициент, учитывающий количество внешних стен в конкретной комнате.
Очевидно, что чем больше в помещении внешних стен, тем больше площадь, через которую происходит тепловые потери. Кроме того, наличие двух и более внешних стен означает еще и углы – чрезвычайно уязвимые места с точки зрения образования «мостиков холода». Коэффициент «а» внесет поправку на эту специфическую особенность комнаты.
Коэффициент принимают равным:
— внешних стен три:а = 1,4.
- «b» — коэффициент, учитывающий расположение внешних стен помещения относительно сторон света.
На количество теплопотерь через стены влияет их расположение относительно сторон света
Даже в самые холодные зимние дни солнечная энергия все же оказывает влияние на температурный баланс в здании. Вполне естественно, что та сторона дома, которая обращена на юг, получает определенный нагрев от солнечных лучей, и теплопотери через нее ниже.
А вот стены и окна, обращённые на север, Солнца «не видят» никогда. Восточная часть дома, хотя и «прихватывает» утренние солнечные лучи, какого-либо действенного нагрева от них все же не получает.
Исходя из этого, вводим коэффициент «b»:
— внешние стены помещения ориентированы на Юг или Запад: b = 1,0.
- «с» — коэффициент, учитывающий расположение помещения относительно зимней «розы ветров»
Возможно, эта поправка не столь обязательна для домов, расположенных на защищенных от ветров участках. Но иногда преобладающие зимние ветры способны внести свои «жесткие коррективы» в тепловой баланс здания. Естественно, что наветренная сторона, то есть «подставленная» ветру, будет терять значительно больше тела, по сравнению с подветренной, противоположной.
Существенные коррективы могут внести преобладающие зимние ветры
По результатам многолетних метеонаблюдений в любом регионе составляется так называемая «роза ветров» — графическая схема, показывающая преобладающие направления ветра в зимнее и летнее время года. Эту информацию можно получить в местной гидрометеослужбе. Впрочем, многие жители и сами, без метеорологов, прекрасно знают, откуда преимущественно дуют ветра зимой, и с какой стороны дома обычно наметает наиболее глубокие сугробы.
Если есть желание провести расчеты с более высокой точностью, то можно включить в формулу и поправочный коэффициент «с», приняв его равным:
— стена, расположенные параллельно направлению ветра: с = 1,1.
- «d» — поправочный коэффициент, учитывающий особенности климатических условий региона постройки дома
Естественно, количество теплопотерь через все строительные конструкции здания будет очень сильно зависеть от уровня зимних температур. Вполне понятно, что в течение зимы показатели термометра «пляшут» в определенном диапазоне, но для каждого региона имеется усредненный показатель самых низких температур, свойственных наиболее холодной пятидневке года (обычно это свойственно январю). Для примера – ниже размещена карта-схема территории России, на которой цветами показаны примерные значения.
Карта-схема минимальных январских температур
Обычно это значение несложно уточнить в региональной метеослужбе, но можно, в принципе, ориентироваться и на свои собственные наблюдения.
Итак, коэффициент «d», учитывающий особенности климата региона, для наших расчетом в принимаем равным:
— не холоднее – 10 °С: d = 0,7.
- «е» — коэффициент, учитывающий степень утепленности внешних стен.
Суммарное значение тепловых потерь здания напрямую связано со степенью утепленности всех строительных конструкций. Одним из «лидеров» по теплопотерям являются стены. Стало быть, значение тепловой мощности, необходимое для поддержания комфортных условий проживания в помещении, находится в зависимости от качества их термоизоляции.
Огромное значение имеет степень утепленности внешних стен
Значение коэффициента для наших расчетов можно принять следующее:
— внешние стены не имеют утепления: е = 1,27;
— средняя степень утепления – стены в два кирпича или предусмотрена их поверхностная термоизоляция другими утеплителями: е = 1,0;
— утепление проведено качественно, на основании проведенных теплотехнических расчетов: е = 0,85.
Ниже по ходу настоящей публикации будут даны рекомендации о том, как можно определить степень утепленности стен и иных конструкций здания.
- коэффициент «f» — поправка на высоту потолков
Потолки, особенно в частных домах, могут иметь различную высоту. Стало быть, и тепловая мощность на прогрев того или иного помещения одинаковой площади будет различаться еще и по этому параметру.
Не будет большой ошибкой принять следующие значения поправочного коэффициента «f»:
— высота потолков более 4,1 м: f = 1,2.
- «g» — коэффициент, учитывающий тип пола или помещение, расположенное под перекрытием.
Как было показано выше, пол является одним из существенных источников теплопотерь. Значит, необходимо внести некоторые корректировки в расчет и на эту особенность конкретного помещения. Поправочный коэффициент «g» можно принять равным:
— холодный пол по грунту или над неотапливаемым помещением (например, подвальным или цокольным): g = 1,4;
— утепленный пол по грунту или над неотапливаемым помещением: g = 1,2;
Нагретый системой отопления воздух всегда поднимается вверх, и если потолок в помещении холодный, то неизбежны повышенные теплопотери, которые потребуют увеличения необходимой тепловой мощности. Введём коэффициент «h», учитывающий и эту особенность рассчитываемого помещения:
— сверху расположен утепленный чердак или иное утепленное помещение: h = 0,9;
Окна – один из «магистральных маршрутов» течек тепла. Естественно, многое в этом вопросе зависит от качества самой оконной конструкции. Старые деревянные рамы, которые раньше повсеместно устанавливались во всех домах, по степени своей термоизоляции существенно уступают современным многокамерным системам со стеклопакетами.
Без слов понятно, что термоизоляционные качества этих окон — существенно различаются
Но и между ПВЗХ-окнами нет полного единообразия. Например, двухкамерный стеклопакет (с тремя стеклами) будет намного более «теплым» чем однокамерный.
Значит, необходимо ввести определенный коэффициент «i», учитывающий тип установленных в комнате окон:
— стандартные деревянные окна с обычным двойным остеклением: i = 1,27;
— современные оконные системы с однокамерным стеклопакетом: i = 1,0;
— современные оконные системы с двухкамерным или трехкамерным стеклопакетом, в том числе и с аргоновым заполнением: i= 0,85.
- «j» — поправочный коэффициент на общую площадь остекления помещения
Какими бы качественными окна ни были, полностью избежать теплопотерь через них все равно не удастся. Но вполне понятно, что никак нельзя сравнивать маленькое окошко с панорамным остеклением чуть ли ни на всю стену.
Чем больше площадь остекления, тем значительнее общие теплопотери
Потребуется для начала найти соотношение площадей всех окон в комнате и самого помещения:
В зависимости от полученного значения и определяется поправочный коэффициент «j»:
Дверь на улицу или на неотапливаемый балкон — это всегда дополнительная «лазейка» для холода
Дверь на улицу или на открытый балкон способна внести свои коррективы в тепловой баланс помещения – каждое ее открытие сопровождается проникновением в помещение немалого объема холодного воздуха. Поэтому имеет смысл учесть и ее наличие – для этого введем коэффициент «k», который примем равным:
Возможно, кому-то это покажется несущественной мелочью, но все же – почему бы сразу не учесть планируемую схему подключения радиаторов отопления. Дело в том, что их теплоотдача, а значит, и участие в поддержании определенного температурного баланса в помещении, достаточно заметно меняется при разных типах врезки труб подачи и «обратки».
Как самому провести расчет отопления по площади помещения? Существует несколько методик – от самых простых до учитывающих многие дополнительные критерии.
Источник: otoplenie-expert.com
Станьте первым!